Spatial Patterns in Mass Balance of the Siple Coast and Amundsen Sea Sectors, West Antarctica
نویسندگان
چکیده
Local rates of change in ice-sheet thickness were calculated at 15 sites in West Antarctica using the submergence velocity technique. This method entails a comparison of the vertical velocity of the ice sheet, measured using repeat global positioning system surveys of markers, and local long-term rates of snow accumulation obtained using firn-core stratigraphy. Any significant difference between these two quantities represents a thickness change with time. Measurements were conducted at sites located 100–200 km apart along US ITASE traverse routes, and at several isolated locations. All but one of the sites are distributed in the Siple Coast and the Amundsen Sea basin along contours of constant elevation, along flowlines, across ice divides and close to regions of enhanced flow. Calculated rates of thickness change are different from site to site. Most of the large rates of change in ice thickness ( 10 cma or larger) are observed in or close to regions of rapid flow, and are probably related to icedynamics effects. Near-steady-state conditions are calculated mostly at sites in the slow-moving ice-sheet interior and near the main West Antarctic ice divide. These results are consistent with regional estimates of ice-sheet change derived from remote-sensing measurements at similar locations in West Antarctica.
منابع مشابه
Spatial variability of Antarctic surface snow glaciochemistry: implications for palaeoatmospheric circulation reconstructions
Ice core glaciochemical records provide detailed information on past changes in atmospheric chemical composition and circulation, which is essential for understanding the timing and phasing of climatic change in different regions. Atmospheric circulation reconstructions based on these records require knowledge of modern chemical concentration controls (chemical source, transport pathway and str...
متن کاملStrawman Science Motivation for Coordinated Multidisciplinary Research in the Amundsen Sea Embayment, West Antarctica Ad Hoc Pine Island Glacier/Thwaites Glacier Working Group
The West Antarctic Ice Sheet (WAIS) is the only remaining marine ice sheet from the last glacial period. The bed is primarily below sea level and slopes down from the coast to the interior. It has been hypothesized that the ice sheet may be susceptible to run-away grounding line retreat [Weertman, 1974] leading to rapid disintegration and sea level rise. Were the WAIS to completely melt, the wa...
متن کاملMass balance of polar ice sheets.
Recent advances in the determination of the mass balance of polar ice sheets show that the Greenland Ice Sheet is losing mass by near-coastal thinning, and that the West Antarctic Ice Sheet, with thickening in the west and thinning in the north, is probably thinning overall. The mass imbalance of the East Antarctic Ice Sheet is likely to be small, but even its sign cannot yet be determined. Lar...
متن کاملConstraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation
In Antarctica, uncertainties in mass input and output translate directly into uncertainty in glacier mass balance and thus in sea level impact. While remotely sensed observations of ice velocity and thickness over the major outlet glaciers have improved our understanding of ice loss to the ocean, snow accumulation over the vast Antarctic interior remains largely unmeasured. Here, we show that a...
متن کاملGlacial isostatic adjustment in response to changing Late Holocene behaviour of ice streams on the Siple Coast, West Antarctica
S U M M A R Y The Siple Coast region of Antarctica contains a number of fast-flowing ice streams, which control the dynamics and mass balance of the region. These ice streams are known to undergo stagnation and reactivation cycles, which lead to ice thickness changes that may be sufficient to excite a viscous solid Earth response (glacial isostatic adjustment; GIA). This study aims to quantify ...
متن کامل